
Peter J. Haas

College of Information and Computer Sciences
University of Massachusetts Amherst

EDBT 2018

Approximate Query Processing:
Overview and Challenges

Thanks to:

Andrew McGregor
Barzan Mozafari

2

Approximate Query Processing (APQ)

Data

Synopsis

Data stream

Query Query

Exact answer
(slow)

Approx. answer
(fast)

(static or dynamic)

sample or sketch

AQP is More Important Than Ever

3

How to
deal with

data
explosion?

• Costly for ordinary people (EC2 = $)
• Not eco-friendly
• Some algorithms not
embarrassingly parallel
• Concurrent queries degrade performance

Parallel/Distributed
Computing

AQP
• Cheap
• Green

Can combine both

Source: Patrick Cheesman 2016 Source: InsideBIGDATA 2017

APQ Canonical Examples I

4

Histogram:
§  SELECT COUNT(x) WHERE 5.1 < x < 10.3
§  Exact answer: 21
§  Approximate answer:

 (4.9/5) * 21 + (0.3/5) * 13 = 21.36

x

Fr
eq
ue
nc
y

0 5 10 15 20

0
5

10
15

20
25

4

21

13
11

APQ Canonical Examples II

5

Sample:
§  SELECT SUM(prod) FROM clicks GROUP BY prod

APQ Canonical Examples III

6

Sketch
§  SELECT COUNT(DISTINCT x)
§  Exact answer: 4
§  Approximate answer: (2/0.413) – 1 = 3.84

5
3
5
2
2
1
1
3
2
5

0.857
0.599
0.413
0.226

normalized hash function

0.2 0.4 0.6 0.80 1

A Taxonomy of APQ Problems

Simple analytics Complex analytics Machine Learning

Static
queries

Heavy hitters,

Max/min,

Quantiles,

Distinct values,

Frequency moments

Sketches
(FM, AMS, LSH, …)

Random projections,

Bayesian models

…

Graph
mining,

Fixed
analytic
workflows

Spanner
(distances)

Sparsifer
(cuts)

SNAPE
samples
(vertex cover)

Clustering,
Classification,
Regression,

Model mgmt,

Data cleaning

CoreSets,

Time-biased
samples,

Uniform/
stratified
samples

Predict.
queries

and data

SPJ+agg queries,

Lp distances

Range sums,

K-nearest neighbors,

Subset sums

Stratified/VarOpt/
Measure-biased/ CR
samples,

Sample + index,

Workload-based wavelets
and histograms

SQL queries,

Visual
analytics

Analytic
workflows

Bayesian and
maxEnt
models

ML workflow

 ?

Ad hoc
queries

SPJ+agg queries

Visual analytics

Uniform samples,

Multi-dim. histograms

Bayesian models

SQL queries

Injected
distinct
samplers
(Quickr)

Ad hoc ML ?

7

SPJ = Select, Project, Join

Challenge: Industrial Strength APQ Systems (Mozafari 2017)

8

AQP: Where Are We Now?

OLAP
Workloads TPC-H TPC-DS Facebook Conviva Inc. Customer

System ABM [1] QuickR [2] BlinkDB [3] [1] + [3] Verdict [5]

Unsupported
Queries

See
paper

Full outer
joins

Joins of
multiple fact

tables

Joins of
multiple fact

tables

Multiple fact joins,
nested, textual

filters

Percentage of
Supported

Queries
68% > 90% > 96 % 91% 74%

Speedup 10x 2x ? 10-200x 2-20x

?

Source: Mozafari 2017

So far: relatively simple SQL queries

Challenge: Industrial Strength APQ Systems (Mozafari 2017)

Compatibility with existing engines: Middleware required
§  Efficiency challenges)
§  Automatic query rewrite needed

Dealing with existing interfaces
§  Compatibility and user friendliness
§  High-level accuracy contracts

(at least p% accurate with p% prob and exist w. p% prob)

9

Middleware-based AQP: Challenges & OpportuniCes

Verdict	Architecture	(h/p://verdictdb.org)	

Advantage: UlBmate generality

•  Drop-in solution: No changes to underlying DBMS

•  Works with all DBMSs: Vertica, Impala, SparkSQL, Hive, ...

Challenge: Ensuring efficiency

•  Bootstrap, online aggregation, co-partitioning, ...

Source: Mozafari 2017

Challenge: Industrial Strength APQ Systems (Mozafari 2017)

Query planning

§  Different query-plan criteria from traditional query optimization

– Minimize time to acceptable error or error within time constraint
– Error can be hard to predict and control

•  So far: Analytical formulas, Bayesian modeling, analytical/Poisson bootstrap
•  A priori error guarantees (sample+seek w. measure-biased sampling, indexes…)

– Latency is very hard to predict (esp. in parallel/distributed setting)

§  Automatically choosing the right synopsis
– Run a competing set of synopses and combine answers
– Theory? E.g, space complexity analysis

[Kaushik et al. 2005]

§  Learning based on prior results + exploration
(extend to dynamic data)

10

error

time
t

Challenge: Industrial Strength APQ Systems

Handling Complex analytics

§  Arbitrary SQL aggregate queries

– Subqueries: [Joshi and Jemaine 2009; Rusu et al. 2015]
– Quickr [Kandula et al. 2016] inject distinct-samplers

into query plan (multiple passes)

§  Set-valued queries [Ioannidis and Poosala 1999]

§  Modern queries
– Graph queries
– ML (coreSets, model management, sampleClean)

§  Sequences of analytical operations: error propagation? [Ioannidis & Christodolakis 1991]

§  Error estimation and guarantees
– Even in “simple” SPJ+Agg setting with GROUP-BY and selection predicates

11

(a) Work�ow of Q����� (b) Apriori sampling

Figure �: Overview of Q����� and how it di�ers from prior methods.

columns such that the additional storage space required to
store samples can be prohibitively large.● Queries typically have aggregation operators, large support,
and output� input, so they are approximable.● Several factors hinder approximability: queries use a di-
verse set of columns requiring extensive strati�cation. Many
queries join large input relations.● Queries are deep, involvingmultiple e�ective passes over data
including network shu�es.

4. JUST-IN-TIME SAMPLING
Figure �a shows an overview of Q�����. Q����� uses statistics

of the input datasets to generate at query optimization time an exe-
cution plan with samplers placed at appropriate locations. �e sam-
plers are described in §�.�. �e algorithm that determines how best
to place the samplers is in §�.�. Analysis of the error and properties
of the transformation rules is in §�.�. We brie�y recount our goals:

● Minimal overhead to the administrator: �at is, assume no
apriori samples, indices or views and support ad-hoc queries.● Support a large fraction of the queries in SQL and big-data
scenarios; including general joins and UDFs.● Performance gains should be sizable; either reducing the re-
source needs of a query or a faster completion time or both.● O�er accurate answers: �at is, with high probability miss
no groups, o�er con�dence intervals, and estimate aggregate
values to within a small ratio of their true values.

4.1 Samplers
Q����� uses three types of samplers. Each sampler passes a sub-

set of the input rows. �e subset is chosen based on the policies
that we describe next. In addition, each sampler appends a meta-
data column representing the weight associated with the row. �e
weight is used to estimate the true value of aggregates and the con-
�dence intervals. Our samplers are required to run in a streaming
and partitionablemode. �ey have to execute in one pass over data
with a memory footprint well below the size of the input or out-
put. Furthermore, whenmany instances of a sampler run in parallel
on di�erent partitions of the input, the union of their output should
mimic the output of one sampler instance examining all of the input.
�eseminimal assumptions enable placing the samplers at arbitrary
locations in a parallel query plan.

4.1.1 Uniform sampler
Given probability p, the uniform sampler ΓUp lets a row pass

through with probability p uniformly-at-random. �e weight col-
umn is set to ��p. In contrast, alternatives that pick a desired num-
ber of input rows uniformly-at-random with or without replace-
ment [��] are neither streaming nor partitionable. If implemented
with reservoir sampling so as to �nish in one pass over data, their
memory usage grows up to the desired output size and the parallel
instances have to be synchronized and coordinated. �e number of
rows output by ΓUp is governed by a binomial distribution and each
row can be picked at most once.

4.1.2 Distinct sampler
�e uniform sampler is simple but it has some issues that

limit it from being used widely. Queries with group-by such as
SELECT X, SUM(Y) GROUP BY X can miss groups in the answer, es-
pecially those corresponding to values of X that have low support.
For such queries, Q����� uses a distinct sampler which intuitively
guarantees that at least a certain number of rows pass per distinct
combination of values of a given column set. �e distinct sampler
also helps when aggregates have high skew. To see this problem,
consider a three row input with the values �, �, ��� for column Y.
�e true answer for SUM(Y) is ��� but the projected answer changes
dramatically based on whether the value of ��� is sampled or not;
even at ��� sampling, the most likely answers are � and ���, each of
which happen with likelihood ���.

Given a column set C, a number δ, and probability p, the distinct
sampler ΓDp ,C ,δ ensures that at least δ rows pass through for every dis-
tinct combination of values of the columns in C.� Subsequent rows
with the same value are let through with probability p uniformly-
at-random. �e weight of each passed row is set correspondingly;
i.e., � if the row passes because of the frequency check and ��p if it
passes due to the probability check. Q����� picks the parameters
{C , δ, p} as a by-product of query optimization+sampling (§�.�)

To see how the distinct sampler improves over the uniform sam-
pler, consider the following examples. Columns that form the group
and those used in predicates can be added to the column set C. Since
the distinct sampler will pass some rows for every distinct value of
the columns in C, none of the groups will be missed and some rows
will pass the predicate. Q����� also allows stratifying on functions
over columns. For the skewed aggregates example (input has Y ={�, �, ���}) stratifying on �Y����� ensures that Y = ��� will appear
in the sample.

Since Q����� may employ the distinct sampler on any interme-
diate relation, the sampler must execute in a single pass, have a
bounded resource footprint, and be partitionable. A naive imple-
mentation would maintain the observed frequency count per dis-
tinct value of column set C. �en, it would pass a row while the
frequency seen thus far is below δ with weight � and pick subse-
quent rows with probability p and hence a weight of ��p. �is naive
approach has three problems. �e �rst problem is bias. �e �rst
few rows always pass through and are more likely to impact the
answer. Worse, the �rst few rows picked in the probabilistic mode
have a relatively disproportionate impact on the answer since their
weight ��p is much larger than the previous rows whose weight is
�. Only the more frequently occurring values of C are free from bias
since enough rowswill be picked for those values in the probabilistic
mode. Second, the memory footprint can be as large as the number
of distinct values in C. Finally, when running in a partitionedmode,
it is not possible to track how many rows with a particular value ofC have been selected by the other (parallel) instances of the sam-
pler. Hence, it is hard to ensure that all instances cumulatively pass
at least δ rows and p probability henceforth.

Q����� solves the problems of the naive approach. To be parti-
tionable, we carefully adjust δ based on the degree-of-parallelism
of the sampler D. �at is, each instance of the distinct sampler takes
a modi�ed parameter set {C , � δD � + ε, p} wherein ε is carefully cho-
sen to tradeo� between passing too many rows and passing too few
rows by considering these two extreme cases–(�) all rows with the
same value of C are seen by one sampler instance or (�) rows are
uniformly spread across instances. �e total number of rows passed
by all instances is (δ�D)+ ε for case (�) and δ+Dε for case (�). Case
(�) is less frequent, but can happen if the input is ordered by the col-

�Precisely, at least min(δ, number of rows for that distinct value)

Source: Kandula et al. 2016

Challenge: APQ for Visual Analytics I

Achieving high interactivity

§  Combine ad-hoc sampling with precomputed samples and

indexes (e.g., AQUA, BlinkDB, IDEA, VisTrees)

§  Reuse results between queries (IDEA, Verdict)

§  Predict user behavior to fetch or precompute synopsis of
interest (DICE, ForeCache)

§  Use sketches for statistical guideposts (Foresight)

12

✓̂High,PhD,¬Female = ✓̂High + ✓̂PhD

� ✓̂High,¬PhD

� ✓̂¬High,PhD

� ✓̂High,PhD,Female

Each of the terms in the above equation maps to a region
of the Venn diagram. For example, the red circle represents
✓̂High , and the region of the red circle not overlapping with
the blue circle represents ✓̂High,¬PhD . Visually, we can see
that ✓High,PhD,¬Female can be rewritten in many ways, and
the above equation is one way to rewrite the query that
uses only previously computed estimates from the running
example available in the Result Cache.

The IEP is a very powerful rewrite rule and can be ap-
plied to a broad range of additional queries by considering
the relationship between predicate attributes. For exam-
ple, if the user switches a Boolean operator (e.g., changing
the predicate to sex<>'Female' OR education='PhD'),
we can calculate the frequency of the union of two subpop-
ulations simply by reusing our estimate for the intersection.

We can also use the IEP to take advantage of the mutual
exclusivity of certain predicates. In particular, if the user
applies a predicate representing the intersection of mutually
exclusive subpopulations, we can apply the IEP to deter-
mine that no tuples can possibly exist in the result, therefore
immediately returning a frequency estimate of zero (e.g., a
query with predicate sex='Male' AND sex='Female' has
a frequency of zero). Similarly, if the user applies a predi-
cate representing the union of mutually exclusive subpopu-
lations, we can again apply the IEP to immediately return
a frequency equal to the sum of the subpopulations (e.g., a
query with predicate sex='Male' OR sex='Female' has
a frequency equal to ✓̂Male + ✓̂Female).

3.3 Result Error Propagation
As previously mentioned, users need to know how much

faith to place in an approximate query result. Section 2.3
shows that computing the error for a simple query with no
selections is relatively straightforward, but, when reusing
past results, we need to carefully consider how the (poten-
tially di↵erent) errors from each of the individual approx-
imations contributes to the overall error of the new query
result. Therefore, we apply well-known propagation of un-
certainty principles in order to formally reason about how
error propagates across overlapping queries.

For example, consider again the query representing Step B
of Figure 1. In this case, we approximate the result of the
query as ✓̂salary|Female multiplied by ✓̂Female , so we need to
consider the error associated with both terms. Note that
each of these terms has a di↵erent error; that is, the er-
ror for the estimate ✓̂Female is lower because it was started
earlier (in Step A). After computing the sum of the normal-
ized standard error (Equation 3) across all attribute values
(Section 2.3), we combine the error terms for ✓̂salary|Female

and ✓̂Female using the propagation of uncertainty formula
for multiplication, yielding the estimated error for the final
result.

education

Co
un
t

Pre-K
0

150M

t54 t77t1 … Sample
Store t83 t91t22 …

PhD…

Figure 3: A Tail Index built on education.

These error estimates are also useful during the query op-
timization process. Since queries can often be rewritten into
many alternative forms, the Query Engine can pick the series
of rewrites that produces an approximate query result with
the lowest expected error through a dynamic programming
optimization process that recursively enumerates rewritten
alternatives. In some cases, it is even possible that leverag-
ing past results might produce an approximate result with
higher error than simply computing an estimate by scan-
ning the Sample Store, so the Query Engine must decide if
a rewrite is beneficial at all.

4. TAIL INDEXES
Since the data exploration process is user-driven and in-

herently conversational, the AQP engine is often idle while
the user is interpreting a result and thinking about what
query to issue next. This “think time” not only allows
the system to continue to improve the accuracy of previous
query results but also to prepare for future queries. Some
existing approaches (e.g., ForeCache [4], DICE [19]) lever-
age these interaction delays to model user behavior in order
to predict future queries, but these techniques typically re-
quire a restricted set of operations (e.g., pre-fetching tiles for
maps, faceted cube exploration) or a large corpus of train-
ing data to create user profiles [28]. Instead, as described
in Section 2, our approach leverages a user’s “think time”
to construct Tail Indexes in the background during query
execution to supplement our AQP formulation.
This section first describes how to build a Tail Index on-

the-fly based on the most recently issued query in prepara-
tion for a potential subsequent query on a related subpop-
ulation. Then, we explain the intricacies of how to safely
use these Tail Indexes to support future queries by preserv-
ing the randomness properties necessary for our AQP tech-
niques. Finally, we discuss how to extend Tail Indexes to
support continuous attributes.

4.1 Building a Tail Index
Many of the query rewrite rules described in Section 3

rely on observing tuples belonging to specific subpopulations
(e.g., ‘Male’), which will appear frequently in a scan of the
Sample Store. However, when considering rare subpopula-
tions (e.g., ‘PhD’), tuples belonging to these subpopulations
will not be common enough in a scan of the Sample Store
to provide low-error approximations within the interactivity
threshold. As such, we need to supplement our formulation

1147

Source: Galakatos et al. 2017

K

B1

B21

B22

B31

B32

B33

B41

B42

B51

B52

B6 B7 B8

B43

x

(a) (b)
Figure �. (a) Possible storage layout for strati�ed sample S(�,K).

dimensional strati�ed samples. As described above, each
strati�ed sample can potentially be used at runtime to im-
prove query accuracy and latency, especially when the orig-
inal table contains small groups for a particular column set.
However, each stored sample has a storage cost equal to its
size, and the number of potential samples is exponential in
the number of columns. As a result, we need to be careful
in choosing the set of column-sets on which to build strati-
�ed samples.We formulate the trade-o� between storage cost
and query accuracy/performance as an optimization prob-
lem, described next.

�.�.� Problem Formulation
�e optimization problem takes three factors into account in
determining the sets of columns on which strati�ed samples
should be built: the “sparsity” of the data,workload character-
istics, and the storage cost of samples.

Sparsity of the data. A strati�ed sample on � is useful when
the original table T contains many small groups under �.
Consider aQCS � in table T . Recall thatD(�) denotes the set
of all distinct values on columns � in rows of T . We de�ne a
“sparsity” function ∆(�,M) as the number of groups whose
size in T is less than some number M�:

∆(�,M) = �{x ∈ D(�) ∶ �Tx � < M}�
Workload.A strati�ed sample is only useful when it is bene-
�cial to actual queries. Under our model for queries, a query
has a QCS q j with some (unknown) probability p j - that is,
QCSs are drawn from aMultinomial (p� , p� , ...) distribution.
�e best estimate of p j is simply the frequency of queries with
QCS q j in past queries.

Storage cost. Storage is the main constraint against build-
ing too many strati�ed samples, and against building strat-
i�ed samples on large column sets that produce too many
groups. �erefore, we must compute the storage cost of po-
tential samples and constrain total storage. To simplify the
formulation, we assume a single value of K for all samples;
a sample family � either receives no samples or a full sam-
ple with K elements of Tx for each x ∈ D(�). �S(�,K)� is the
storage cost (in rows) of building a strati�ed sample on a set
of columns �.
�Appropriate values for M will be discussed later in this section. Alterna-
tively, one could plug in di�erent notions of sparsity of a distribution in our
formulation.

Given these three factors de�ned above, we now introduce
our optimization formulation. Let the overall storage capacity
budget (again in rows) be C. Our goal is to select β column
sets from among m possible QCSs, say � i� ,�, � iβ , which can
best answer our queries, while satisfying:

β�
k=�
�S(� ik ,K)� ≤ C

Speci�cally, inBlinkDB, wemaximize the followingmixed
integer linear program (MILP) in which j indexes over all
queries and i indexes over all possible column sets:

G =�
j
p j ⋅ y j ⋅ ∆(q j ,M) (�)

subject to
m�
i=� �S(� i ,K)� ⋅ zi ≤ C (�)

and

∀ j ∶ y j ≤ max
i∶� i⊆q j∪i∶� i⊃q j

(zi min �,
�D(� i)��D(q j)�) (�)

where � ≤ y j ≤ � and zi ∈ {�, �} are variables.
Here, zi is a binary variable determiningwhether a sample

family should be built or not, i.e., when zi = �, we build a
sample family on � i ; otherwise, when zi = �, we do not.

�e goal function (�) aims to maximize the weighted sum
of the coverage of the QCSs of the queries, q j . If we create a
strati�ed sample S(� i ,K), the coverage of this sample for q j
is de�ned as the probability that a given value x of columns q j
is also present among the rows of S(� i ,K). If � i ⊇ q j , then q j
is covered exactly, but � i ⊂ q j can also be useful by partially
covering q j . At runtime, if no strati�ed sample is available that
exactly covers the QCS for a query, a partially-covering QCS
may be used instead. In particular, the uniform sample is a
degenerate case with � i = �; it is useful for many queries but
less useful than more targeted strati�ed samples.

Since the coverage probability is hard to compute in prac-
tice, in this paper we approximate it by y j , which is deter-
mined by constraint (�).�e y j value is in [�, �], with �mean-
ing no coverage, and � meaning full coverage. �e intuition
behind (�) is that when we build a strati�ed sample on a
subset of columns � i ⊆ q j , i.e. when zi = �, we have par-
tially covered q j , too. We compute this coverage as the ra-
tio of the number of unique values between the two sets, i.e.,

��

Source: Agarwal et al. 2013

Challenge: APQ for Visual Analytics II

APQ and perception
§  Not well understood
§  Need theory and user studies
§  Need collaboration with HCI community

13

A bad interface [Fisher et al. 2012]

A bad visualization [Few 2007]

1% 10% 100%

Sampling and cluster perception

Challenge: APQ for Visual Analytics III
Visualizing uncertainty
§  Needed to engender trust,

ensure proper inferences
§  Don’t need precision < screen resolution

[Jugel, et al. 2014]

14

Resampling [Kwon et al. 2017]

CLOUDS [Hellerstein et al. 1999]

Finite-population confidence bands

Challenge: APQ for Visual Analytics IV

15

106 January/February 2017

Visualization Viewpoints

point in time, the current sample may be viewed
as a union of dynamically produced subsamples
from different regions. Each subsample aims to be
representative of its locale.

Under this complex sampling regime, a user must
be able to assess a sample’s quality. Visualization-
based techniques seem particularly appropriate
here because a mathematical statistical analysis is
likely to be complex. A typical criterion for a set
of subsamples is that they exhibit good coverage
over the regions of interest. Moreover, it is usually
desirable for the samples to be disjoint: resampling a
previously sampled point adds no new information
in a statistical sense, and multiply-resampled points
might unduly influence a given visualization. When

sampling a table’s rows, we can use a barrel plot
(as in Figure 8) to indicate subsample coverage
and overlapping subsamples as well as the overall
percentage of sampled rows. The latter has been
shown to affect user confidence.11 One can easily
envision variants of the plot, such as in a heat map
format, for more general data domains.

We expect that users will typically define
subsamples in terms of a finite subset of data
attributes. They will then be interested in comparing
properties of the subsamples with respect to both
these attributes and others. Users will also want to
evaluate subsample properties with respect to the
analysis task at hand. One simple approach is to
provide summary statistics on each subsample such
as mean and standard deviation11 as well as min,
max, quantiles, higher-order moments, and so on.

More generally, we can view a subsample as a point
in a vector space or a manifold. Using dimensionality
reduction techniques, we can project the samples
onto two dimensions and then display them as a
scatterplot. Each subsample is represented by a dot,
and the distance between a pair of dots represents
the similarity of the corresponding subsamples
(see Figure 9a). Furthermore, we can show the
distribution of attribute values over the subsamples;
Figure 9b illustrates this using histograms.

What is the best way to present users with
dynamically generated subsamples? The design
space is vast. As more subsamples are materialized,
the potential for visual clutter increases, so
one possibility is to assign these subsamples to
different layers and display multiple subsamples
by overlaying them (see Figure 10). We can select
collections of subsamples for display based on both
data characteristics and the stages at which the
subsamples were collected.

The techniques illustrated in Figures 9 and 10
can also be applied to bootstrapped subsamples of
a given sample, in which case there will be large
overlaps between subsamples. It is then desirable to
compare the subsamples directly to see if sample
features of interest persist from one subsample to
another. Besides using layers, one can visualize
bootstrap subsamples via a small multiples
approach (see Figure 11). One disadvantage of
this approach is that it can be difficult to visually
compare subtle differences between subsamples by
viewing juxtaposed thumbnails. We can make such
subtle differences more apparent by animating the
transition between subsamples. We can also augment
the visual comparison by quantifying dissimilarities
between two given samples with various statistical
distance measures such as the Kullback-Leibler
divergence and the Hellinger distance.

(a) (b)

Figure 7. Visualization of 2D clusters using density estimation and
resampling: (a) 10 percent and (b) 80 percent samples. The light gray
curves correspond to bootstrap samples, black curves indicate point
estimates of the true cluster boundaries, and red curves show the true
cluster boundaries based on the entire dataset.

(a) (b) (c)

Figure 8. A data barrel view. (a) The grey area represents all rows, (b) the
colored rows represent a sample’s data coverage, and (c) the orange
indicates rows shared by multiple subsamples.

(a) (b)

Figure 9. Visualizing subsamples. (a) In this scatterplot, each subsample
is represented by a dot, and the distance between a pair of dots
represents the similarity of the corresponding subsamples.
(b) The histogram of an attribute value in two different subsamples
allows a side-by-side comparison.

g1vis.indd 106 12/14/16 1:36 PM

Visualizing sample quality (barrel plot)

 IEEE Computer Graphics and Applications 107

The design issues we have discussed in this section
are closely related to those arising in progressive
visualization.20 PV techniques apply to analysis
algorithms, such as k-means clustering, that let us
display intermediate results to the user. PV does not
address sampling or scalability questions directly,
but it does share key design principles, including
the ability to focus attention on data regions of
interest. An important point raised in earlier
work20 is the need to update visualizations in a
timely, but visually nondistracting manner. This
might require user control over display updating
rates and the careful design of visual cues.

Future Directions
Significant progress around design and user
experience is needed if sampling-based techniques
are to be widely adopted for visual analysis. The
goal should be to understand how sampling can
enhance user experience with visual analytics.
With this in mind, our discussion indicates three
important directions for future research in the
visualization community:

 ■ Understanding the interplay of sampling and
perception. Little is known about how sampling
affects user comprehension. Which visualizations
are amenable to sampling? How can we combine
sampling and other visualization methods to
best allow a user to perceive the key patterns
in a dataset?

 ■ Communicating sampling-based uncertainty. A key
aspect of user experience with sampling is dealing
with sampling-induced uncertainty. Even basic
CI methodology needs improvement to enhance
usability.11 More broadly, how do we visualize
uncertainty in analytic settings beyond simple
aggregation queries? How can we accommodate
users who are not experts in statistics? Should
we instead try to make sampling uncertainty
imperceptible to the user?

 ■ Enhancing user interactivity. Users must
feel comfortable with the sampling process
independent of any particular analysis
visualization. How can we give users more
dynamic control over the sampling process?
Research is needed to develop mechanisms
for steering the sampling process beyond the
simple group-oriented controls of an online
aggregation system. Such steering mechanisms
in turn require system feedback about a sample’s
quality—or its constituent subsamples—in terms
of representativeness, structural fidelity, and
coverage. We need to develop, evaluate, and
visualize such quality measures.

All three of the foregoing research directions
require the development of well-grounded models
that capture user perception and behavior (trust)
with respect to sampling. To this end, researchers
must conduct careful studies of how users interact
with sampling in visual analytics tools.11

As Fisher articulated,2 research on sampling
for visual analysis must be pursued in close

collaboration with the database community. Da-
tabase researchers need to provide mechanisms
that enable users to efficiently sample not just
high probability regions but also rare data points,
in an ad hoc, flexible manner. Fast computation is
needed not only for processing and rendering the
data, but also for executing the statistical analysis
that underlies uncertainty visualization and sam-
ple-quality assessment. This suggests the need for
a hybrid approach that exploits both precomputa-
tion and sampling. Moreover, visualization meth-
ods should take advantage of modern parallel and
distributed systems and specialized hardware such
as GPUs.21

Enabling the visual analysis of large datasets
while sustaining an interactive user experience is

Samples generated Heatmap of multiple samples

Figure 10. Interactive exploration of subsamples. Assigning subsamples
to different layers allows users to select collections of subsamples and
explore them based on both data characteristics and the stages at which
the subsamples were collected.

Figure 11. Small multiples for bootstrap subsamples. Users can select a
thumbnail from the options on the bottom to view in detail.

g1vis.indd 107 12/14/16 1:36 PM

Visualizing sample quality (dynamic layering)

Visualizing sample quality

§  Helpful for building trust

[Fisher et al. 2012]

§  Interactive steering of
sampling process [Kwon et al. 2017]

Other Challenges

Combining synopses
§  Ex: count-min sketch è l2-sample è estimate of F2

End-to-end incorporation of risk
§  Data analysis for decision making under uncertainty
§  Choose accuracy of approximation to control risk

Handling Multiple types of uncertainty
§  Ex: AQP in probabilistic databases
§  Ex: Gaussian random field interpolation

16

Electricity demand

fu
lfi

llm
en

t c
os

t (
$)

low risk high risk

Count-Min Sketch
I Maintain vector s 2 Nw via random hash function h : [n] ! [w]

f[1] f[2] f[3] f[4] f[5] f[n]f[6] ...

s[1] s[2] s[3] s[w]...

I Update: For each increment of f
i

, increment s
h

i

. Hence,

s
k

=
X

j :h
j

=k

f
j

e.g., s3 = f6 + f7 + f13

I Query: Use f̃
i

= s
h

i

to estimate f
i

.

I Lemma: f
i

 f̃
i

and P
h
f̃
i

� f
i

+ 2m/w
i
 1/2

I Thm: Let w = 2/✏. Repeat the hashing lg(��1) times in parallel and
take the minimum estimate for f

i

P
h
f
i

 f̃
i

 f
i

+ ✏m
i
� 1� �

13/1

l
2
-sample: return (I ,R), where

Pr(I = i) = (1 ± ε)
f

i

2

F
2

 and R = (1 ± ε)f
i

A Random Sample of References

APQ SYSTEMS
§  BlinkDB: Queries with bounded errors and bounded response times on very large data. Agarwal et al., Eurosys 2015.
§  A Handbook for Building an Approximate Query Engine. Mozafari and Niu, IEEE Data Engrg. Bulletin 38(3), 2015.
§  Approximate query engines: Commercial challenges and research opportunities. Mozafari, SIGMOD 2017.
§  Verdict: A system for stochastic query planning. Mozafari, CIDR 2015.
§  Sample + Seek: Approximating Aggregates with Distribution Precision Guarantee. Ding et al., SIGMOD 2016.
§  Quickr: Lazily approximating complex ad hoc queries in bigData clusters. Kandula et al., SIGMOD 2016.

SAMPLING
§  Stream sampling for variance-optimal estimation of subset sums. Cohen et al., SIAM J. Comput. 40(5), 2011.
§  A sampling algebra for aggregate estimation. Nirkhiwale et al., PVLDB 6(14), 2013.
§  One sketch for all: Theory and application of conditional random sampling. Li et al., NIPS 2008.
§  Temporally-biased sampling for online model management. Hentschel et al., EDBT 2018.
§  The analytical bootstrap: A new method for fast error estimation in approximate query processing. Zeng et al., SIGMOD

2014.

MISCELLANEOUS
§  Neighbor-sensitive hashing. Park et al., VLDB 2015.
§  Histogram-based approximation of set-valued query-answers. Ioannidis and Poosala, VLDB 1999.
§  Practical coreset constructions for machine learning. Bachem et al., arXiv:1703.06476 [stat.ML], 2017.
§  A sample-and-clean framework for fast and accurate query processing on dirty data. Wang et al., SIGMOD 2014.
§  On the propagation of errors in the size of join results. Ioannidis and Christodoulakis, SIGMOD 1991.

17

References, Continued
APQ FOR VISUAL ANALYTICS
§  Sampling for Scalable Visual Analytics. Kwon et al., IEEE Comput. Graphics Appl. 37(1), 2017.
§  Visualization-aware sampling for very large databases. Park et al., ICDE 2016.
§  Trust, but verify: Optimistic visualizations of approximate queries for exploring big data. Moritz et al., CHI 2017.
§  VisTrees: Fast indexes for interactive data exploration. El-Hindi et al., HILDA 2016.
§  Foresight: Rapid data exploration through guideposts. Demiralp et al., CoRR abs/1709.10513, 2017.
§  Rolling the dice: Multidimensional visual exploration using scatterplot matrix navigation. Elmqvist et al., IEEE Trans.

Visualization and Comput. Graphics 14(6), 2008.
§  Dynamic prefetching of data tiles for interactive visualization. Battle et al., SIGMOD 2016.

APQ SYNOPSES: SURVEYS AND COMPARISONS
§  Graph stream algorithms: A survey. McGregor, SIGMOD Record 43(1), 2014.
§  Synopses for massive data: Samples, histograms, wavelets, sketches. Cormode et al., Foundations and Trends in

Databases 4(1-3), 2012.
§  Approximate query processing: No silver bullet. Chaudhuri et al., SIGMOD 2017.

§  Synopses for query optimization: A space-complexity perspective. Kaushik et al., ACM TODS 30(4), 2005.

LEARNING AND BAYESIAN SYNOPSES
§  Revisiting reuse for approximate query processing. Galakatos et al., VLDB 2017.
§  Database learning: Toward a database that becomes smarter every time. Park et al., SIGMOD 2017.
§  A Bayesian Method for Guessing the Extreme Values in a Data Set. Wu and Jermaine, VLDB 2007.
§  Workload-Driven Antijoin Cardinality Estimation. Rusu et al., ACM TODS 40(3), 2015.
§  Sampling-based estimators for subset-based queries. Joshi and Jermain VLDB J. 18(1), 2009.

 18

