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Approximate Query Processing (APQ) 

Data

Synopsis

Data stream

Query Query

Exact answer
(slow)

Approx. answer
(fast)

(static or dynamic)

sample or sketch



AQP is More Important Than Ever 
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How to 
deal with 

data 
explosion? 

• Costly for ordinary people (EC2 = $) 
• Not eco-friendly 
• Some algorithms not 
embarrassingly parallel 
• Concurrent queries degrade performance 

Parallel/Distributed 
Computing 

AQP 
• Cheap 
• Green 

Can combine both 

Source: Patrick Cheesman 2016 Source: InsideBIGDATA 2017  



APQ Canonical Examples I 
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Histogram: 
§  SELECT COUNT(x) WHERE 5.1 < x < 10.3  
§  Exact answer: 21 
§  Approximate answer: 

        (4.9/5) * 21 + (0.3/5) * 13 = 21.36 
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APQ Canonical Examples II 
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Sample: 
§  SELECT SUM(prod) FROM clicks GROUP BY prod 



APQ Canonical Examples III 
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Sketch 
§  SELECT COUNT(DISTINCT x) 
§  Exact answer: 4 
§  Approximate answer: (2/0.413) – 1 = 3.84 
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A Taxonomy of APQ Problems 

Simple analytics Complex analytics Machine Learning 

Static 
queries 

Heavy hitters, 
 
Max/min, 
 
Quantiles, 
 
Distinct values, 
 
Frequency moments 

Sketches 
(FM, AMS, LSH, …) 
 
Random projections, 
 
Bayesian models 
 
… 

Graph 
mining, 
 
Fixed 
analytic 
workflows 

Spanner 
(distances) 
 
Sparsifer 
(cuts) 
 
SNAPE 
samples 
(vertex cover) 
 
 

Clustering, 
Classification, 
Regression, 
 
Model mgmt, 
 
Data cleaning 

CoreSets, 
 
Time-biased 
samples, 
 
Uniform/
stratified 
samples 

Predict. 
queries 

and data 

SPJ+agg queries, 
 
Lp distances 
 
Range sums, 
 
K-nearest neighbors, 
 
Subset sums 

Stratified/VarOpt/
Measure-biased/ CR 
samples, 
 
Sample + index, 
 
Workload-based wavelets 
and histograms 

SQL queries, 
 
Visual 
analytics 
 
Analytic 
workflows 
 

Bayesian and 
maxEnt 
models 

ML workflow 

 ? 

Ad hoc 
queries 

SPJ+agg queries 
 
Visual analytics 

Uniform samples, 
 
Multi-dim. histograms 
 
Bayesian models 

SQL queries 
 

Injected 
distinct 
samplers 
(Quickr) 

Ad hoc ML ? 
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SPJ = Select, Project, Join 



Challenge: Industrial Strength APQ Systems (Mozafari 2017) 
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AQP: Where Are We Now? 

OLAP 
Workloads TPC-H TPC-DS Facebook Conviva Inc. Customer 

System ABM [1] QuickR [2] BlinkDB [3] [1] + [3] Verdict [5] 

Unsupported 
Queries 

See 
paper 

Full outer 
joins 

Joins of 
multiple fact 

tables 

Joins of 
multiple fact 

tables 

Multiple fact joins, 
nested, textual 

filters 

Percentage of 
Supported 

Queries 
68% > 90% > 96 % 91% 74% 

Speedup 10x 2x ? 10-200x 2-20x 

? 

Source: Mozafari 2017  

So far: relatively simple SQL queries 



Challenge: Industrial Strength APQ Systems (Mozafari 2017) 

Compatibility with existing engines: Middleware required 
§  Efficiency challenges) 
§  Automatic query rewrite needed 

 
 
Dealing with existing interfaces 
§  Compatibility and user friendliness 
§  High-level accuracy contracts 

(at least p% accurate with p% prob and exist w. p% prob) 
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Middleware-based AQP: Challenges & OpportuniCes 

Verdict	Architecture	(h/p://verdictdb.org)	

Advantage: UlBmate generality 

•  Drop-in solution: No changes to underlying DBMS 

•  Works with all DBMSs: Vertica, Impala, SparkSQL, Hive, ... 

Challenge: Ensuring efficiency 

•  Bootstrap, online aggregation, co-partitioning, ... 

Source: Mozafari 2017  



Challenge: Industrial Strength APQ Systems (Mozafari 2017) 

Query planning 
 
§  Different query-plan criteria from traditional query optimization 

– Minimize time to acceptable error or error within time constraint 
– Error can be hard to predict and control 

•  So far: Analytical formulas, Bayesian modeling, analytical/Poisson bootstrap 
•  A priori error guarantees (sample+seek w. measure-biased sampling, indexes…) 

– Latency is very hard to predict (esp. in parallel/distributed setting) 
 

§  Automatically choosing the right synopsis 
– Run a competing set of synopses and combine answers 
– Theory? E.g, space complexity analysis 

[Kaushik et al. 2005] 

§  Learning based on prior results + exploration 
(extend to dynamic data) 
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Challenge: Industrial Strength APQ Systems 

Handling Complex analytics 
 
§  Arbitrary SQL aggregate queries 

– Subqueries: [Joshi and Jemaine 2009; Rusu et al. 2015] 
– Quickr [Kandula et al. 2016] inject distinct-samplers 

into query plan (multiple passes) 

§  Set-valued queries [Ioannidis and Poosala 1999] 

§  Modern queries 
– Graph queries 
– ML (coreSets, model management, sampleClean) 

§  Sequences of analytical operations: error propagation? [Ioannidis & Christodolakis 1991] 

§  Error estimation and guarantees 
– Even in “simple” SPJ+Agg setting with GROUP-BY and selection predicates 
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(a) Work�ow of Q����� (b) Apriori sampling

Figure �: Overview of Q����� and how it di�ers from prior methods.

columns such that the additional storage space required to
store samples can be prohibitively large.● Queries typically have aggregation operators, large support,
and output� input, so they are approximable.● Several factors hinder approximability: queries use a di-
verse set of columns requiring extensive strati�cation. Many
queries join large input relations.● Queries are deep, involvingmultiple e�ective passes over data
including network shu�es.

4. JUST-IN-TIME SAMPLING
Figure �a shows an overview of Q�����. Q����� uses statistics

of the input datasets to generate at query optimization time an exe-
cution plan with samplers placed at appropriate locations. �e sam-
plers are described in §�.�. �e algorithm that determines how best
to place the samplers is in §�.�. Analysis of the error and properties
of the transformation rules is in §�.�. We brie�y recount our goals:

● Minimal overhead to the administrator: �at is, assume no
apriori samples, indices or views and support ad-hoc queries.● Support a large fraction of the queries in SQL and big-data
scenarios; including general joins and UDFs.● Performance gains should be sizable; either reducing the re-
source needs of a query or a faster completion time or both.● O�er accurate answers: �at is, with high probability miss
no groups, o�er con�dence intervals, and estimate aggregate
values to within a small ratio of their true values.

4.1 Samplers
Q����� uses three types of samplers. Each sampler passes a sub-

set of the input rows. �e subset is chosen based on the policies
that we describe next. In addition, each sampler appends a meta-
data column representing the weight associated with the row. �e
weight is used to estimate the true value of aggregates and the con-
�dence intervals. Our samplers are required to run in a streaming
and partitionablemode. �ey have to execute in one pass over data
with a memory footprint well below the size of the input or out-
put. Furthermore, whenmany instances of a sampler run in parallel
on di�erent partitions of the input, the union of their output should
mimic the output of one sampler instance examining all of the input.
�eseminimal assumptions enable placing the samplers at arbitrary
locations in a parallel query plan.

4.1.1 Uniform sampler
Given probability p, the uniform sampler ΓUp lets a row pass

through with probability p uniformly-at-random. �e weight col-
umn is set to ��p. In contrast, alternatives that pick a desired num-
ber of input rows uniformly-at-random with or without replace-
ment [��] are neither streaming nor partitionable. If implemented
with reservoir sampling so as to �nish in one pass over data, their
memory usage grows up to the desired output size and the parallel
instances have to be synchronized and coordinated. �e number of
rows output by ΓUp is governed by a binomial distribution and each
row can be picked at most once.

4.1.2 Distinct sampler
�e uniform sampler is simple but it has some issues that

limit it from being used widely. Queries with group-by such as
SELECT X, SUM(Y) GROUP BY X can miss groups in the answer, es-
pecially those corresponding to values of X that have low support.
For such queries, Q����� uses a distinct sampler which intuitively
guarantees that at least a certain number of rows pass per distinct
combination of values of a given column set. �e distinct sampler
also helps when aggregates have high skew. To see this problem,
consider a three row input with the values �, �, ��� for column Y.
�e true answer for SUM(Y) is ��� but the projected answer changes
dramatically based on whether the value of ��� is sampled or not;
even at ��� sampling, the most likely answers are � and ���, each of
which happen with likelihood ���.

Given a column set C, a number δ, and probability p, the distinct
sampler ΓDp ,C ,δ ensures that at least δ rows pass through for every dis-
tinct combination of values of the columns in C.� Subsequent rows
with the same value are let through with probability p uniformly-
at-random. �e weight of each passed row is set correspondingly;
i.e., � if the row passes because of the frequency check and ��p if it
passes due to the probability check. Q����� picks the parameters
{C , δ, p} as a by-product of query optimization+sampling (§�.�)

To see how the distinct sampler improves over the uniform sam-
pler, consider the following examples. Columns that form the group
and those used in predicates can be added to the column set C. Since
the distinct sampler will pass some rows for every distinct value of
the columns in C, none of the groups will be missed and some rows
will pass the predicate. Q����� also allows stratifying on functions
over columns. For the skewed aggregates example (input has Y ={�, �, ���}) stratifying on �Y����� ensures that Y = ��� will appear
in the sample.

Since Q����� may employ the distinct sampler on any interme-
diate relation, the sampler must execute in a single pass, have a
bounded resource footprint, and be partitionable. A naive imple-
mentation would maintain the observed frequency count per dis-
tinct value of column set C. �en, it would pass a row while the
frequency seen thus far is below δ with weight � and pick subse-
quent rows with probability p and hence a weight of ��p. �is naive
approach has three problems. �e �rst problem is bias. �e �rst
few rows always pass through and are more likely to impact the
answer. Worse, the �rst few rows picked in the probabilistic mode
have a relatively disproportionate impact on the answer since their
weight ��p is much larger than the previous rows whose weight is
�. Only the more frequently occurring values of C are free from bias
since enough rowswill be picked for those values in the probabilistic
mode. Second, the memory footprint can be as large as the number
of distinct values in C. Finally, when running in a partitionedmode,
it is not possible to track how many rows with a particular value ofC have been selected by the other (parallel) instances of the sam-
pler. Hence, it is hard to ensure that all instances cumulatively pass
at least δ rows and p probability henceforth.

Q����� solves the problems of the naive approach. To be parti-
tionable, we carefully adjust δ based on the degree-of-parallelism
of the sampler D. �at is, each instance of the distinct sampler takes
a modi�ed parameter set {C , � δD � + ε, p} wherein ε is carefully cho-
sen to tradeo� between passing too many rows and passing too few
rows by considering these two extreme cases–(�) all rows with the
same value of C are seen by one sampler instance or (�) rows are
uniformly spread across instances. �e total number of rows passed
by all instances is (δ�D)+ ε for case (�) and δ+Dε for case (�). Case
(�) is less frequent, but can happen if the input is ordered by the col-

�Precisely, at least min(δ, number of rows for that distinct value)

Source: Kandula et al. 2016 



Challenge: APQ for Visual Analytics I 

Achieving high interactivity 
 
§  Combine ad-hoc sampling with precomputed samples and 

indexes (e.g., AQUA, BlinkDB, IDEA, VisTrees) 

§  Reuse results between queries (IDEA, Verdict) 

§  Predict user behavior to fetch or precompute synopsis of 
interest (DICE, ForeCache) 

§  Use sketches for statistical guideposts (Foresight) 
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✓̂High,PhD,¬Female = ✓̂High + ✓̂PhD

� ✓̂High,¬PhD

� ✓̂¬High,PhD

� ✓̂High,PhD,Female

Each of the terms in the above equation maps to a region
of the Venn diagram. For example, the red circle represents
✓̂High , and the region of the red circle not overlapping with
the blue circle represents ✓̂High,¬PhD . Visually, we can see
that ✓High,PhD,¬Female can be rewritten in many ways, and
the above equation is one way to rewrite the query that
uses only previously computed estimates from the running
example available in the Result Cache.

The IEP is a very powerful rewrite rule and can be ap-
plied to a broad range of additional queries by considering
the relationship between predicate attributes. For exam-
ple, if the user switches a Boolean operator (e.g., changing
the predicate to sex<>'Female' OR education='PhD'),
we can calculate the frequency of the union of two subpop-
ulations simply by reusing our estimate for the intersection.

We can also use the IEP to take advantage of the mutual
exclusivity of certain predicates. In particular, if the user
applies a predicate representing the intersection of mutually
exclusive subpopulations, we can apply the IEP to deter-
mine that no tuples can possibly exist in the result, therefore
immediately returning a frequency estimate of zero (e.g., a
query with predicate sex='Male' AND sex='Female' has
a frequency of zero). Similarly, if the user applies a predi-
cate representing the union of mutually exclusive subpopu-
lations, we can again apply the IEP to immediately return
a frequency equal to the sum of the subpopulations (e.g., a
query with predicate sex='Male' OR sex='Female' has
a frequency equal to ✓̂Male + ✓̂Female).

3.3 Result Error Propagation
As previously mentioned, users need to know how much

faith to place in an approximate query result. Section 2.3
shows that computing the error for a simple query with no
selections is relatively straightforward, but, when reusing
past results, we need to carefully consider how the (poten-
tially di↵erent) errors from each of the individual approx-
imations contributes to the overall error of the new query
result. Therefore, we apply well-known propagation of un-
certainty principles in order to formally reason about how
error propagates across overlapping queries.

For example, consider again the query representing Step B
of Figure 1. In this case, we approximate the result of the
query as ✓̂salary|Female multiplied by ✓̂Female , so we need to
consider the error associated with both terms. Note that
each of these terms has a di↵erent error; that is, the er-
ror for the estimate ✓̂Female is lower because it was started
earlier (in Step A). After computing the sum of the normal-
ized standard error (Equation 3) across all attribute values
(Section 2.3), we combine the error terms for ✓̂salary|Female

and ✓̂Female using the propagation of uncertainty formula
for multiplication, yielding the estimated error for the final
result.

education

Co
un
t

Pre-K
0

150M

t54 t77t1 … Sample
Store t83 t91t22 …

PhD…

Figure 3: A Tail Index built on education.

These error estimates are also useful during the query op-
timization process. Since queries can often be rewritten into
many alternative forms, the Query Engine can pick the series
of rewrites that produces an approximate query result with
the lowest expected error through a dynamic programming
optimization process that recursively enumerates rewritten
alternatives. In some cases, it is even possible that leverag-
ing past results might produce an approximate result with
higher error than simply computing an estimate by scan-
ning the Sample Store, so the Query Engine must decide if
a rewrite is beneficial at all.

4. TAIL INDEXES
Since the data exploration process is user-driven and in-

herently conversational, the AQP engine is often idle while
the user is interpreting a result and thinking about what
query to issue next. This “think time” not only allows
the system to continue to improve the accuracy of previous
query results but also to prepare for future queries. Some
existing approaches (e.g., ForeCache [4], DICE [19]) lever-
age these interaction delays to model user behavior in order
to predict future queries, but these techniques typically re-
quire a restricted set of operations (e.g., pre-fetching tiles for
maps, faceted cube exploration) or a large corpus of train-
ing data to create user profiles [28]. Instead, as described
in Section 2, our approach leverages a user’s “think time”
to construct Tail Indexes in the background during query
execution to supplement our AQP formulation.
This section first describes how to build a Tail Index on-

the-fly based on the most recently issued query in prepara-
tion for a potential subsequent query on a related subpop-
ulation. Then, we explain the intricacies of how to safely
use these Tail Indexes to support future queries by preserv-
ing the randomness properties necessary for our AQP tech-
niques. Finally, we discuss how to extend Tail Indexes to
support continuous attributes.

4.1 Building a Tail Index
Many of the query rewrite rules described in Section 3

rely on observing tuples belonging to specific subpopulations
(e.g., ‘Male’), which will appear frequently in a scan of the
Sample Store. However, when considering rare subpopula-
tions (e.g., ‘PhD’), tuples belonging to these subpopulations
will not be common enough in a scan of the Sample Store
to provide low-error approximations within the interactivity
threshold. As such, we need to supplement our formulation
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Source: Galakatos et al. 2017  

K 

B1 

B21 

B22 

B31 

B32 

B33 

B41 

B42 

B51 

B52 

B6 B7 B8 

B43 

x 

(a) (b)
Figure �. (a) Possible storage layout for strati�ed sample S(�,K).

dimensional strati�ed samples. As described above, each
strati�ed sample can potentially be used at runtime to im-
prove query accuracy and latency, especially when the orig-
inal table contains small groups for a particular column set.
However, each stored sample has a storage cost equal to its
size, and the number of potential samples is exponential in
the number of columns. As a result, we need to be careful
in choosing the set of column-sets on which to build strati-
�ed samples.We formulate the trade-o� between storage cost
and query accuracy/performance as an optimization prob-
lem, described next.

�.�.� Problem Formulation
�e optimization problem takes three factors into account in
determining the sets of columns on which strati�ed samples
should be built: the “sparsity” of the data,workload character-
istics, and the storage cost of samples.

Sparsity of the data. A strati�ed sample on � is useful when
the original table T contains many small groups under �.
Consider aQCS � in table T . Recall thatD(�) denotes the set
of all distinct values on columns � in rows of T . We de�ne a
“sparsity” function ∆(�,M) as the number of groups whose
size in T is less than some number M�:

∆(�,M) = �{x ∈ D(�) ∶ �Tx � < M}�
Workload.A strati�ed sample is only useful when it is bene-
�cial to actual queries. Under our model for queries, a query
has a QCS q j with some (unknown) probability p j - that is,
QCSs are drawn from aMultinomial (p� , p� , ...) distribution.
�e best estimate of p j is simply the frequency of queries with
QCS q j in past queries.

Storage cost. Storage is the main constraint against build-
ing too many strati�ed samples, and against building strat-
i�ed samples on large column sets that produce too many
groups. �erefore, we must compute the storage cost of po-
tential samples and constrain total storage. To simplify the
formulation, we assume a single value of K for all samples;
a sample family � either receives no samples or a full sam-
ple with K elements of Tx for each x ∈ D(�). �S(�,K)� is the
storage cost (in rows) of building a strati�ed sample on a set
of columns �.
�Appropriate values for M will be discussed later in this section. Alterna-
tively, one could plug in di�erent notions of sparsity of a distribution in our
formulation.

Given these three factors de�ned above, we now introduce
our optimization formulation. Let the overall storage capacity
budget (again in rows) be C. Our goal is to select β column
sets from among m possible QCSs, say � i� ,�, � iβ , which can
best answer our queries, while satisfying:

β�
k=�
�S(� ik ,K)� ≤ C

Speci�cally, inBlinkDB, wemaximize the followingmixed
integer linear program (MILP) in which j indexes over all
queries and i indexes over all possible column sets:

G =�
j
p j ⋅ y j ⋅ ∆(q j ,M) (�)

subject to
m�
i=� �S(� i ,K)� ⋅ zi ≤ C (�)

and

∀ j ∶ y j ≤ max
i∶� i⊆q j∪i∶� i⊃q j

(zi min �,
�D(� i)��D(q j)� ) (�)

where � ≤ y j ≤ � and zi ∈ {�, �} are variables.
Here, zi is a binary variable determiningwhether a sample

family should be built or not, i.e., when zi = �, we build a
sample family on � i ; otherwise, when zi = �, we do not.

�e goal function (�) aims to maximize the weighted sum
of the coverage of the QCSs of the queries, q j . If we create a
strati�ed sample S(� i ,K), the coverage of this sample for q j
is de�ned as the probability that a given value x of columns q j
is also present among the rows of S(� i ,K). If � i ⊇ q j , then q j
is covered exactly, but � i ⊂ q j can also be useful by partially
covering q j . At runtime, if no strati�ed sample is available that
exactly covers the QCS for a query, a partially-covering QCS
may be used instead. In particular, the uniform sample is a
degenerate case with � i = �; it is useful for many queries but
less useful than more targeted strati�ed samples.

Since the coverage probability is hard to compute in prac-
tice, in this paper we approximate it by y j , which is deter-
mined by constraint (�).�e y j value is in [�, �], with �mean-
ing no coverage, and � meaning full coverage. �e intuition
behind (�) is that when we build a strati�ed sample on a
subset of columns � i ⊆ q j , i.e. when zi = �, we have par-
tially covered q j , too. We compute this coverage as the ra-
tio of the number of unique values between the two sets, i.e.,

��

Source: Agarwal et al. 2013  



Challenge: APQ for Visual Analytics II 

APQ and perception 
§  Not well understood 
§  Need theory and user studies 
§  Need collaboration with HCI community 
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A bad interface [Fisher et al. 2012] 

A bad visualization [Few 2007] 

1% 10% 100% 

Sampling and cluster perception 



Challenge: APQ for Visual Analytics III 
Visualizing uncertainty 
§  Needed to engender trust, 

ensure proper inferences 
§  Don’t need precision < screen resolution 

[Jugel, et al. 2014] 
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Resampling [Kwon et al. 2017] 

CLOUDS [Hellerstein et al. 1999] 

Finite-population confidence bands 



Challenge: APQ for Visual Analytics IV 
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106 January/February 2017

Visualization Viewpoints

point in time, the current sample may be viewed 
as a union of dynamically produced subsamples 
from different regions. Each subsample aims to be 
representative of its locale.

Under this complex sampling regime, a user must 
be able to assess a sample’s quality. Visualization-
based techniques seem particularly appropriate 
here because a mathematical statistical analysis is 
likely to be complex. A typical criterion for a set 
of subsamples is that they exhibit good coverage 
over the regions of interest. Moreover, it is usually 
desirable for the samples to be disjoint: resampling a 
previously sampled point adds no new information 
in a statistical sense, and multiply-resampled points 
might unduly influence a given visualization. When 

sampling a table’s rows, we can use a barrel plot 
(as in Figure 8) to indicate subsample coverage 
and overlapping subsamples as well as the overall 
percentage of sampled rows. The latter has been 
shown to affect user confidence.11 One can easily 
envision variants of the plot, such as in a heat map 
format, for more general data domains.

We expect that users will typically define 
subsamples in terms of a finite subset of data 
attributes. They will then be interested in comparing 
properties of the subsamples with respect to both 
these attributes and others. Users will also want to 
evaluate subsample properties with respect to the 
analysis task at hand. One simple approach is to 
provide summary statistics on each subsample such 
as mean and standard deviation11 as well as min, 
max, quantiles, higher-order moments, and so on.

More generally, we can view a subsample as a point 
in a vector space or a manifold. Using dimensionality 
reduction techniques, we can project the samples 
onto two dimensions and then display them as a 
scatterplot. Each subsample is represented by a dot, 
and the distance between a pair of dots represents 
the similarity of the corresponding subsamples 
(see Figure 9a). Furthermore, we can show the 
distribution of attribute values over the subsamples; 
Figure 9b illustrates this using histograms. 

What is the best way to present users with 
dynamically generated subsamples? The design 
space is vast. As more subsamples are materialized, 
the potential for visual clutter increases, so 
one possibility is to assign these subsamples to 
different layers and display multiple subsamples 
by overlaying them (see Figure 10). We can select 
collections of subsamples for display based on both 
data characteristics and the stages at which the 
subsamples were collected.

The techniques illustrated in Figures 9 and 10 
can also be applied to bootstrapped subsamples of 
a given sample, in which case there will be large 
overlaps between subsamples. It is then desirable to 
compare the subsamples directly to see if sample 
features of interest persist from one subsample to 
another. Besides using layers, one can visualize 
bootstrap subsamples via a small multiples 
approach (see Figure 11). One disadvantage of 
this approach is that it can be difficult to visually 
compare subtle differences between subsamples by 
viewing juxtaposed thumbnails. We can make such 
subtle differences more apparent by animating the 
transition between subsamples. We can also augment 
the visual comparison by quantifying dissimilarities 
between two given samples with various statistical 
distance measures such as the Kullback-Leibler 
divergence and the Hellinger distance.

(a) (b)

Figure 7. Visualization of 2D clusters using density estimation and 
resampling: (a) 10 percent and (b) 80 percent samples. The light gray 
curves correspond to bootstrap samples, black curves indicate point 
estimates of the true cluster boundaries, and red curves show the true 
cluster boundaries based on the entire dataset.

(a) (b) (c)

Figure 8. A data barrel view. (a) The grey area represents all rows, (b) the 
colored rows represent a sample’s data coverage, and (c) the orange 
indicates rows shared by multiple subsamples.

(a) (b)

Figure 9. Visualizing subsamples. (a) In this scatterplot, each subsample 
is represented by a dot, and the distance between a pair of dots 
represents the similarity of the corresponding subsamples.  
(b) The histogram of an attribute value in two different subsamples 
allows a side-by-side comparison. 
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Visualizing sample quality (barrel plot) 
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The design issues we have discussed in this section 
are closely related to those arising in progressive 
visualization.20 PV techniques apply to analysis 
algorithms, such as k-means clustering, that let us 
display intermediate results to the user. PV does not 
address sampling or scalability questions directly, 
but it does share key design principles, including 
the ability to focus attention on data regions of 
interest. An important point raised in earlier 
work20 is the need to update visualizations in a 
timely, but visually nondistracting manner. This 
might require user control over display updating 
rates and the careful design of visual cues.

Future Directions
Significant progress around design and user 
experience is needed if sampling-based techniques 
are to be widely adopted for visual analysis. The 
goal should be to understand how sampling can 
enhance user experience with visual analytics. 
With this in mind, our discussion indicates three 
important directions for future research in the 
visualization community:

 ■ Understanding the interplay of sampling and 
perception. Little is known about how sampling 
affects user comprehension. Which visualizations 
are amenable to sampling? How can we combine 
sampling and other visualization methods to 
best allow a user to perceive the key patterns 
in a dataset? 

 ■ Communicating sampling-based uncertainty. A key 
aspect of user experience with sampling is dealing 
with sampling-induced uncertainty. Even basic 
CI methodology needs improvement to enhance 
usability.11 More broadly, how do we visualize 
uncertainty in analytic settings beyond simple 
aggregation queries? How can we accommodate 
users who are not experts in statistics? Should 
we instead try to make sampling uncertainty 
imperceptible to the user?

 ■ Enhancing user interactivity. Users must 
feel comfortable with the sampling process 
independent of any particular analysis 
visualization. How can we give users more 
dynamic control over the sampling process? 
Research is needed to develop mechanisms 
for steering the sampling process beyond the 
simple group-oriented controls of an online 
aggregation system. Such steering mechanisms 
in turn require system feedback about a sample’s 
quality—or its constituent subsamples—in terms 
of representativeness, structural fidelity, and 
coverage. We need to develop, evaluate, and 
visualize such quality measures. 

All three of the foregoing research directions 
require the development of well-grounded models 
that capture user perception and behavior (trust) 
with respect to sampling. To this end, researchers 
must conduct careful studies of how users interact 
with sampling in visual analytics tools.11

As Fisher articulated,2 research on sampling 
for visual analysis must be pursued in close 

collaboration with the database community. Da-
tabase researchers need to provide mechanisms 
that enable users to efficiently sample not just 
high probability regions but also rare data points, 
in an ad hoc, flexible manner. Fast computation is 
needed not only for processing and rendering the 
data, but also for executing the statistical analysis 
that underlies uncertainty visualization and sam-
ple-quality assessment. This suggests the need for 
a hybrid approach that exploits both precomputa-
tion and sampling. Moreover, visualization meth-
ods should take advantage of modern parallel and 
distributed systems and specialized hardware such 
as GPUs.21 

Enabling the visual analysis of large datasets 
while sustaining an interactive user experience is 

Samples generated Heatmap of multiple samples

Figure 10. Interactive exploration of subsamples. Assigning subsamples 
to different layers allows users to select collections of subsamples and 
explore them based on both data characteristics and the stages at which 
the subsamples were collected.

Figure 11. Small multiples for bootstrap subsamples. Users can select a 
thumbnail from the options on the bottom to view in detail.
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Visualizing sample quality (dynamic layering) 

Visualizing sample quality 
 
§  Helpful for building trust 

[Fisher et al. 2012] 

§  Interactive steering of 
sampling process [Kwon et al. 2017]  



Other Challenges 

Combining synopses 
§  Ex: count-min sketch è l2-sample è estimate of F2 

 
End-to-end incorporation of risk 
§  Data analysis for decision making under uncertainty 
§  Choose accuracy of approximation to control risk 
 
Handling Multiple types of uncertainty 
§  Ex: AQP in probabilistic databases 
§  Ex: Gaussian random field interpolation 
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