Approximate Query Processing: Overview and Challenges

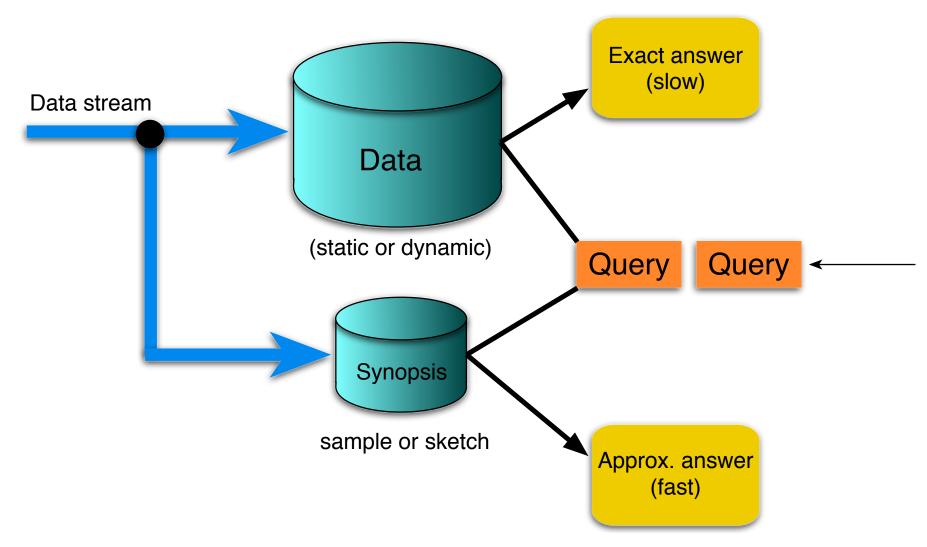
Peter J. Haas

College of Information and Computer Sciences University of Massachusetts Amherst

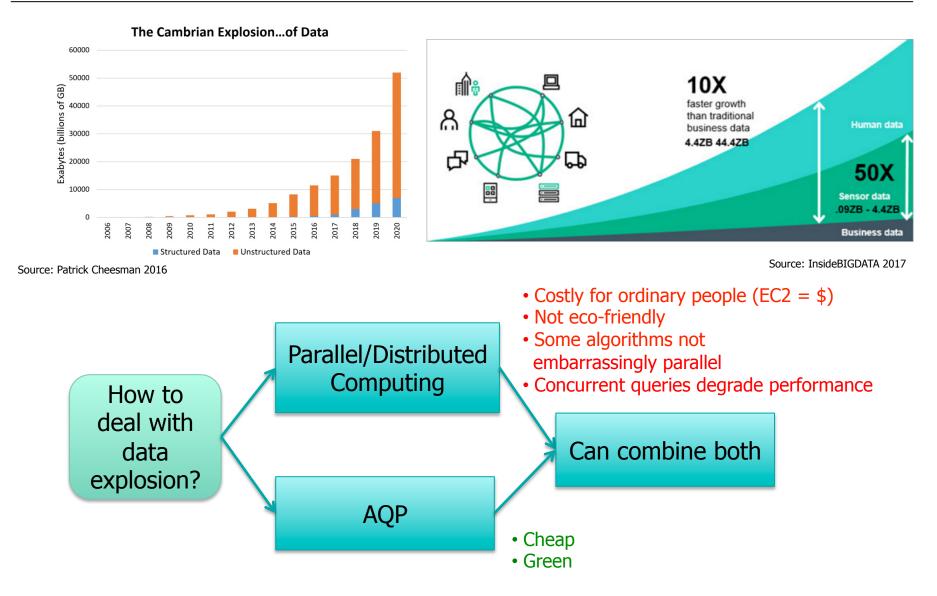
Thanks to:

Andrew McGregor Barzan Mozafari

Approximate Query Processing (APQ)



AQP is More Important Than Ever

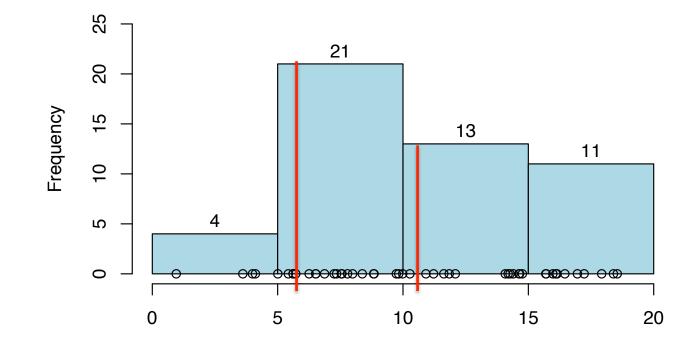


APQ Canonical Examples I

Histogram:

- SELECT COUNT(x) WHERE 5.1 < x < 10.3</p>
- Exact answer: 21
- Approximate answer:

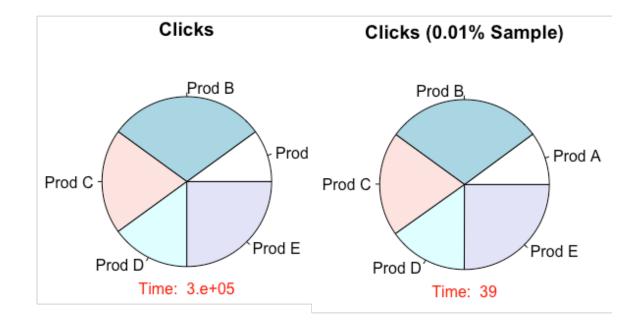
(4.9/5) * 21 + (0.3/5) * 13 = 21.36



APQ Canonical Examples II

Sample:

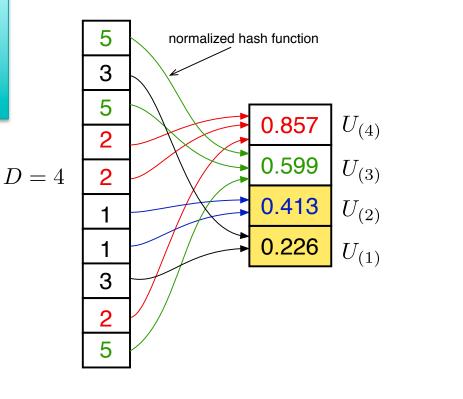
SELECT SUM(prod) FROM clicks GROUP BY prod



APQ Canonical Examples III

Sketch

- SELECT COUNT(DISTINCT x)
- Exact answer: 4
- Approximate answer: (2/0.413) 1 = 3.84



$$E[U_{(2)}] = \frac{2}{D+1} \qquad D = \frac{2}{E[U_{(2)}]} - 1$$

$$E[U_{(2)}] = \frac{2}{D+1} \qquad D = \frac{2}{E[U_{(2)}]} - 1$$

$$E[U_{(2)}] = \frac{2}{D+1} \qquad C = \frac{2}{E[U_{(2)}]} - 1$$

$$C = \frac{2}{E[U_{(2)}]} - 1$$

A Taxonomy of APQ Problems

	Simple analytics		Complex analytics		Machine Learning	
Static queries	Heavy hitters, Max/min, Quantiles, Distinct values, Frequency moments	Sketches (FM, AMS, LSH,) Random projections, Bayesian models 	Graph mining, Fixed analytic workflows	Spanner (distances) Sparsifer (cuts) SNAPE samples (vertex cover)	Clustering, Classification, Regression, Model mgmt, Data cleaning	CoreSets, Time-biased samples, Uniform/ stratified samples
Predict. queries and data	SPJ+agg queries, L _p distances Range sums, K-nearest neighbors, Subset sums	Stratified/VarOpt/ Measure-biased/ CR samples, Sample + index, Workload-based wavelets and histograms	SQL queries, Visual analytics Analytic workflows	Bayesian and maxEnt models	ML workflow	?
Ad hoc queries	SPJ+agg queries Visual analytics	Uniform samples, Multi-dim. histograms Bayesian models	SQL queries	Injected distinct samplers (Quickr)	Ad hoc ML	?

SPJ = Select, Project, Join

Challenge: Industrial Strength APQ Systems (Mozafari 2017)

OLAP Workloads	ТРС-Н	TPC-DS	Facebook	Conviva Inc.	Customer
System	ABM [1]	QuickR [2]	BlinkDB [3]	[1] + [3]	Verdict [5]
Unsupported Queries	See paper	Full outer joins	Joins of multiple fact tables	Joins of multiple fact tables	Multiple fact joins, nested, textual filters
Percentage of Supported Queries	68%	> 90%	> 96 %	91%	74%
Speedup	10x	2x	?	10-200x	2-20x

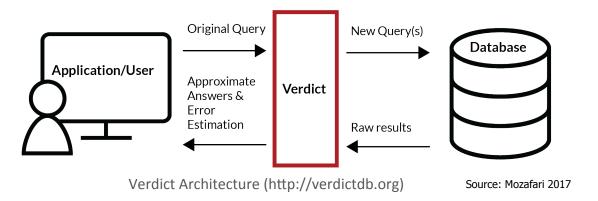
Source: Mozafari 2017

So far: relatively simple SQL queries

Challenge: Industrial Strength APQ Systems (Mozafari 2017)

Compatibility with existing engines: Middleware required

- Efficiency challenges)
- Automatic query rewrite needed



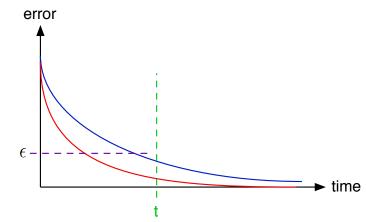
Dealing with existing interfaces

- Compatibility and user friendliness
- High-level accuracy contracts (at least p% accurate with p% prob and exist w. p% prob)

Challenge: Industrial Strength APQ Systems (Mozafari 2017)

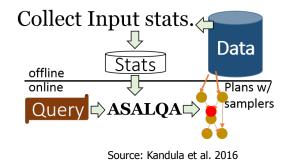
Query planning

- Different query-plan criteria from traditional query optimization
 - Minimize time to acceptable error or error within time constraint
 - Error can be hard to predict and control
 - So far: Analytical formulas, Bayesian modeling, analytical/Poisson bootstrap
 - A priori error guarantees (sample+seek w. measure-biased sampling, indexes...)
 - Latency is very hard to predict (esp. in parallel/distributed setting)
- Automatically choosing the right synopsis
 - Run a competing set of synopses and combine answers
 - Theory? E.g, space complexity analysis
 [Kaushik et al. 2005]
- Learning based on prior results + exploration (extend to dynamic data)



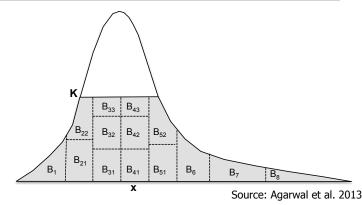
Handling Complex analytics

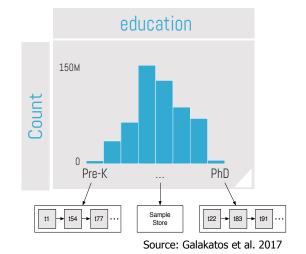
- Arbitrary SQL aggregate queries
 - Subqueries: [Joshi and Jemaine 2009; Rusu et al. 2015]
 - Quickr [Kandula et al. 2016] inject distinct-samplers into query plan (multiple passes)
- Set-valued queries [Ioannidis and Poosala 1999]
- Modern queries
 - Graph queries
 - ML (coreSets, model management, sampleClean)
- Sequences of analytical operations: error propagation? [Ioannidis & Christodolakis 1991]
- Error estimation and guarantees
 - Even in "simple" SPJ+Agg setting with GROUP-BY and selection predicates



Achieving high interactivity

- Combine ad-hoc sampling with precomputed samples and indexes (e.g., AQUA, BlinkDB, IDEA, VisTrees)
- Reuse results between queries (IDEA, Verdict)
- Predict user behavior to fetch or precompute synopsis of interest (DICE, ForeCache)
- Use sketches for statistical guideposts (Foresight)

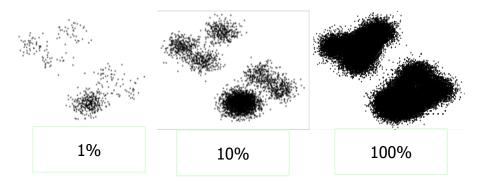




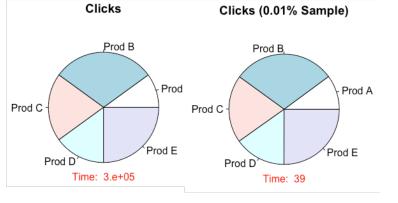
Challenge: APQ for Visual Analytics II

APQ and perception

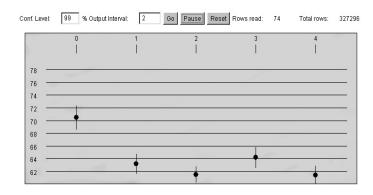
- Not well understood
- Need theory and user studies
- Need collaboration with HCI community



Sampling and cluster perception



A bad visualization [Few 2007]

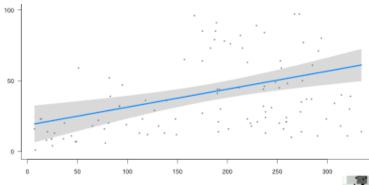


A bad interface [Fisher et al. 2012]

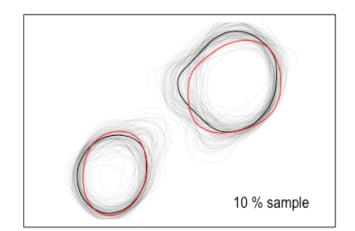
Challenge: APQ for Visual Analytics III

Visualizing uncertainty

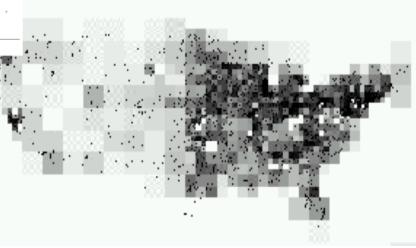
- Needed to engender trust, ensure proper inferences
- Don't need precision < screen resolution [Jugel, et al. 2014]



Finite-population confidence bands



Resampling [Kwon et al. 2017]

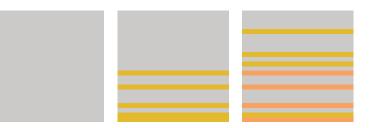


CLOUDS [Hellerstein et al. 1999]

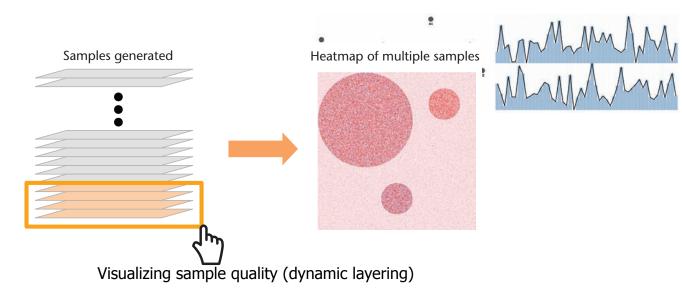
Challenge: APQ for Visual Analytics IV

Visualizing sample quality

- Helpful for building trust [Fisher et al. 2012]
- Interactive steering of sampling process [Kwon et al. 2017]



Visualizing sample quality (barrel plot)



Other Challenges

Combining synopses

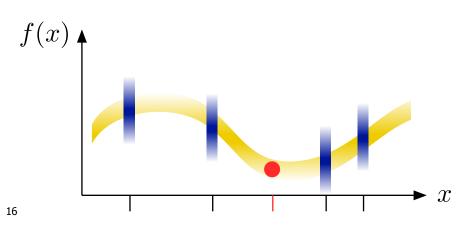
• Ex: count-min sketch \rightarrow l_2 -sample \rightarrow estimate of F_2

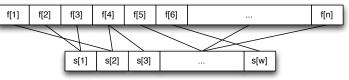
End-to-end incorporation of risk

- Data analysis for decision making under uncertainty
- Choose accuracy of approximation to control risk

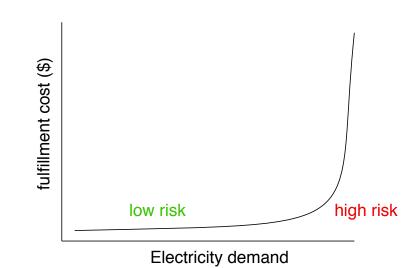
Handling Multiple types of uncertainty

- Ex: AQP in probabilistic databases
- Ex: Gaussian random field interpolation





 I_2 -sample: return (*I*,*R*), where Pr(*I* = *i*) = $(1 \pm \varepsilon) \frac{f_i^2}{F_2}$ and $R = (1 \pm \varepsilon) f_i$



APQ SYSTEMS

- BlinkDB: Queries with bounded errors and bounded response times on very large data. Agarwal et al., *Eurosys* 2015.
- A Handbook for Building an Approximate Query Engine. Mozafari and Niu, *IEEE Data Engrg. Bulletin* 38(3), 2015.
- Approximate query engines: Commercial challenges and research opportunities. Mozafari, SIGMOD 2017.
- Verdict: A system for stochastic query planning. Mozafari, *CIDR* 2015.
- Sample + Seek: Approximating Aggregates with Distribution Precision Guarantee. Ding et al., *SIGMOD* 2016.
- Quickr: Lazily approximating complex ad hoc queries in bigData clusters. Kandula et al., SIGMOD 2016.

SAMPLING

- Stream sampling for variance-optimal estimation of subset sums. Cohen et al., SIAM J. Comput. 40(5), 2011.
- A sampling algebra for aggregate estimation. Nirkhiwale et al., *PVLDB* 6(14), 2013.
- One sketch for all: Theory and application of conditional random sampling. Li et al., *NIPS* 2008.
- Temporally-biased sampling for online model management. Hentschel et al., *EDBT* 2018.
- The analytical bootstrap: A new method for fast error estimation in approximate query processing. Zeng et al., *SIGMOD* 2014.

MISCELLANEOUS

- Neighbor-sensitive hashing. Park et al., VLDB 2015.
- Histogram-based approximation of set-valued query-answers. Ioannidis and Poosala, *VLDB* 1999.
- Practical coreset constructions for machine learning. Bachem et al., arXiv:1703.06476 [stat.ML], 2017.
- A sample-and-clean framework for fast and accurate query processing on dirty data. Wang et al., *SIGMOD* 2014.
- On the propagation of errors in the size of join results. Ioannidis and Christodoulakis, *SIGMOD* 1991.

References, Continued

APQ FOR VISUAL ANALYTICS

- Sampling for Scalable Visual Analytics. Kwon et al., *IEEE Comput. Graphics Appl.* 37(1), 2017.
- Visualization-aware sampling for very large databases. Park et al., *ICDE* 2016.
- Trust, but verify: Optimistic visualizations of approximate queries for exploring big data. Moritz et al., CHI 2017.
- VisTrees: Fast indexes for interactive data exploration. El-Hindi et al., *HILDA* 2016.
- Foresight: Rapid data exploration through guideposts. Demiralp et al., CoRR abs/1709.10513, 2017.
- Rolling the dice: Multidimensional visual exploration using scatterplot matrix navigation. Elmqvist et al., *IEEE Trans. Visualization and Comput. Graphics* 14(6), 2008.
- Dynamic prefetching of data tiles for interactive visualization. Battle et al., SIGMOD 2016.

APQ SYNOPSES: SURVEYS AND COMPARISONS

- Graph stream algorithms: A survey. McGregor, *SIGMOD Record* 43(1), 2014.
- Synopses for massive data: Samples, histograms, wavelets, sketches. Cormode et al., Foundations and Trends in Databases 4(1-3), 2012.
- Approximate query processing: No silver bullet. Chaudhuri et al., SIGMOD 2017.
- Synopses for query optimization: A space-complexity perspective. Kaushik et al., ACM TODS 30(4), 2005.

LEARNING AND BAYESIAN SYNOPSES

- Revisiting reuse for approximate query processing. Galakatos et al., *VLDB* 2017.
- Database learning: Toward a database that becomes smarter every time. Park et al., SIGMOD 2017.
- A Bayesian Method for Guessing the Extreme Values in a Data Set. Wu and Jermaine, *VLDB* 2007.
- Workload-Driven Antijoin Cardinality Estimation. Rusu et al., ACM TODS 40(3), 2015.
- Sampling-based estimators for subset-based queries. Joshi and Jermain VLDB J. 18(1), 2009.